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Surface Wave Regionalization and Tomography

in China and its Vicinity

Francis Wu and Alan Jones

State University of New York, Binghamton

Introduction

In the broadest outline, Continental China and its immediate vicinity can be represented as a
mosaic of blocks that were accreted through geological ages. In general, Siberian shield can be
considered the core, with generally younger terrains appended to it at later times. Much of the
insight on the continental tectonics of that area is gained from surface geological observation (Yang,
1986). The deeper seismic strucutres of this area remain relatively unknown. Judging from a limited
number of crustal profiles that had been shot and few surface wave studies in China, the crust in
this area is laterally very heterogeneous. Several surface wave dispersion studies have been done
outside of China by using data recorded at stations on the periphery; the foci of these studies are
often concentrated on Tibet, one of the outstanding tectonic features of this area. As a result of the
establishment of high quality seismic stations in China, many studies are now possible. Itis still a
very sparse network in that station spacing in on the order of 1000 km. For surface waves however,

it is quite sufficient.

Inthisreport, surface waves recorded at the Chinese Digital Seismic Network (CDSN) stations
from carthquakes within the area are used to determine the group velocities of both Rayleigh and
Love waves along more than two hundred paths. We then employ these dispersion curves in two
studies. By adopting a regionalization scheme based on the geological map of China, we can
determine the "pure path” dispersion characteristics of these regions and and determine the velocity
model for these regions. We can also avoid.making a priori assumptions of regions and construct

a tomographic image of the area. The two methods are complementary in that the tomographic



result provides an overall picture of the structural variations in the area and thus give an independent
assessment of the soundness of the regionalization scheme. On the other hand, to invert for velocity
structure, the construction of a dispersion curve from the tomographic image is not a straightforward

task as the resultis smoothed differently at each period; the regionalization result is readily invertible.

Of the previous surface wave studies in this area, most of them are done with data external
to the region of interest. Chun and Yoshii (1977) used events on the eastern side of the plateau and
stations south of the Himalayas; they aim they study at Tibet. Patton (1980) and Feng and Teng
(1983) studied a large portion of Eurasia with Rayleigh waves traversing through the area; while
Patton (1980) defined the regions based on topography and known crustal thicknesses, Feng and
Teng (1983) divided the region into 10° x 10° grid. Brandon and Romanowicz (1986) employ the
"two-event" technique to determine dispersion curves in northem Tibet. Feng et al. (1983) used
data recorded on Kimnos seismographs from stations within China to derive surface wave dispersion
in the period range of 10 to 50 seconds. Relatively few paths were used in their study. Some paths
are within the tectonic units Feng et al. (1883) determined; for paths that covered more than one

region the fractional path composition is assigned and the dispersion in the desired region extracted.

Although the the amount of surface data recorded within east Asia is increasing rapidly, with
the establishment of CDSN and later stations in the Russian and other republics, as far as the
regionalization study is concerned, the need to achieve a balance between the data available and
the details to be resolved remains. We started our study with more than 31 regions, representing
reasonably well the main features shown in the 1:4,000,000 Ceology Map of China (Ministry of
Geology, 1976). Among the 31 regions, some have areas less than 50,000 km? and are ill resolved
in the iﬁverersion. Subsequent tests involving the monitoring of model resolution and statistical
significance with reduced number of blocks, with the desire that most of the distinct tectonic blocks
be included and significantly resolved. The statistical measures used to assess the statistical sig-
nificance of the result are the Akaike Final Prediction Error (FPE; Akaike, 1969) and the F-test

(Jacobson and Shaw, 1991); the results of these tests corroborate each other, giving us confidence




in the results. In view of the importance of anisotropy in the study of crust and upper mantle, we
have also subjected our data to such analyses. The anisotropic parameters thus obtained however,

are found not to be statistically significant.

In our tomographic inversion a modified Gilbert-Backus method (Ditmar and Yanovskaya,
1987; Keilis-Borok et al., 1989) is employed. This method has the advantage that it does not require
a subjective choice of boundaries; instead, for each period, it produces a smooth group velocity
distribution of the area covered by the raypaths, with its resolution (in km) depending on the dis-
tribution of paths.

The tomographic images of the region as a whole and the velocity structures obtained from
inversion of Rayleigh and Love wave dispersion curves for various tectonic regions show clearly
the lateral variations in crustal structures. Tibet is by far the most prominent features in the region,
but we are able to resolve smaller features as well. Only very preliminary results are shown here.

Further work will be published in a paper under preparation (Wu, Levshin and Jones, 1992).

Data

Figure 1 shows the location of the 69 events and the CDSN stations; the event data are also
listed in Table 1. Because of the wide dynamic range of the CDSN seismic system, although the
records stay on scale for magnitude 7 earthquakes, surface waves from Mg~ =4.3 can be used to
determine group velocities in the 20-70 second range. The 69 events used in this study are located
within and around the study area (Table II and Figure 1), yielding altogether more than 230 Love
and Rayleigh dispersion curves. The group velocity dispersion curves are determined with an
interactive multiple filter group velocity program on workstations, allowing rapid group velocity

determination and visual quality control. Table II presents a list of events used in this study.
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Methodology

Regionalization
Isotropic mode}
Assuming that a surface wave passes through various tectonic blocks and the velocities vary

in each block. We can write, for the kth path (between an epicenter and a station) at one frequency

1.5 M

Ul.is the group slowness, A, is the length of path in the ith block, and U; is the group velocity in the

ith block that we wish to find. Let us write this system of equations as:

Ds =1 )

where D is the matrix formed from the lengths of paths in each region, s is the vector of slownesses
to be determined and ris the vector of measured group slowness foreach path. This over-determined
setof equations is solved in a least-squared sense using the method of Singular Value Decomposition
(SVD; see for example, Press et al., 1985). The solution is repeated for each period.

Anisotropic model
In our study we use the same formulation as that of Nishimura and Forsythe (1988), in which

azimuthal anisotropy is determined. A set of equations including the anisotropic parameters can

be written in the same form as (2). And SVD can again be employed for its solution.




Once the solution of equations (2) is found, one can compute the summed-squared residual

of the errors:
SSR =Xt -1") A3)
where t is the measured travel time and t’ is the predicted travel time.

If all of the eigenvectors obtained from the SVD procedure are used, the solution will have
large variances due to the presence of small eigenvalues. The usual practice is to discard the smallest
eigenvalues which has the effect of discarding some of the eigenvectors. As more eigenvalues are

retained, the SSR becomes smaller.

One method to determine how many eigenvalues should be retained is the sequential F-test
(Jacobson and Shaw, 1991). To use the F-test, one computes the SSR for the case of one retained
eigenvalue. Then additional eigenvalues are added one at a time. The F-test is applied using the
SSR compared with the SSR obtained with just one eigenvalue. When it is determined that there
is a significant difference between the SSRs at some level (e.g. 95%), then these eigenvalues are
retained. More eigenvalues are again added one by one and compared with the last significant SSR.

The F statistic is computed as:

_ ((SSR, — SSR,)/(p -k)) 4
=TSSR, /(n—p)) @

where p is the number of eigenvalues retained, k is the previous number retained which gave a
significant result and n is the number of equations. It should be pointed out that the F-test is only

valid if the errors have a gaussian distribution.

Another method to determine the number of eigenvalues to keep is due to Akaike (1969).
Akaike computes a Final Prediction Error (FPE):




FPE =SSR, %-:—'_2’%2 _ (5)

where p is the number of retained eigenvalues and n is the total number of eigenvalues. The number

of eigenvalues to retain is given by the value of p which yields the smallest FPE.
Tomography
The method used in this study is described in detail in Keilis-Borok (1989).

The first step involves the transformation of spherical coordinates 8, ¢ to that of x, y. The

transformation

x =R, Intan(6/2)

Yy =R 6)
V(x,y)=v(6,$)/sin0

where R, is the Earth’s radius. The distortion of v(6, ¢) is minimized in this transformation if sin @

does not vary too much within the area. By transforming the area to that around two sides of the
equator reduces the error. One gains maximum advantage if the new equator lies along the long

diagonal of a roughly rectangular area.

The travel time between two points (x,;, Yo;) and (xy;, y,;) can be represented as

(o0 7o)
:,:f Ve, y)ds ™

(xu»’u)

We wish to solve V~'(x, y) under smoothing and other constraints.




Regionalized Dispersion of China and Results of Inversion

In our preliminary work (Wu, 1989), we have tested a detailed regionalization scheme that
including a total of 31 regions in China and its vicinity. The boundaries follow closely those in the
geology map of China. As it was shown in Wu (1989) the resolution for many regions were quite
poor. We group regions with similar tectonics, judged on the basis on types of rocks, platformal,
with Bouguer gravity anomaly, and other crustal studies, our general tectonic understanding, as
well as the ray paths coverage, which determines the resolvability of the regions, we have divided
China and its vicinity into seventeen regions. We have kept the regions that were resolved in the
earlier study (Wu, 1989), and combined those that are tectonically similar (in age, lithology or
gravitational characteristics). The boundaries of these blocks are shown in Figure 1. The ray paths

coverage is shown in Figure 2.
Results

The final regionalization scheme we have adopted allows us to look at the dispersion char-

acteristics of the main tectonic provinces of China and its vicinity.
Dispersion curves

Figure 3 shows the Rayleigh dispersion curves of the seventeen regions marked in Figure 1,
and Figure 4 shows the corresponding curves for Love waves. Although the results for some oi
the regions remain unchanged from those presented in Wu (1989), the new regionalization lessens

the trade-offs in the resolution matrix (Figure 5 and 6). These curves are now being inverted for

velocity structures.

E-Test and FPE test

The F-test and FPE tests described earlier were used in the SVD inversion for regionalized

dispersion curves. As shown in Figures 7 and 8, the minima for F-test and FPE coincide, N=15,




for both Rayleigh and Love waves, and accordingly, 15 cigenvalues were retained in the solution
for group velocity. The minima are quite subtle but can be determined by examining the numbers

which generated these plots.

Anisotropic Crust and Upper Mantle?

Anisotropy determination based on shear wave splitting has been found to be indicative of
regional stress directions. Nishimura and Forsyth (1988) has used regionalized data in the Pacific
Ocean for the determination of anisotropy related to ocean floor spreading. In this study we use
formulation identical to that of Nishimura and Forsyth in an attempt to see whether we can resolve
the anisotropy using our data. We then use the F-test and FPE to determine how many eigenvalues
can be retained. For this test, we concoct a model with only seven regions as shown in Figure 9.

There are altogether 21 parameters to de resolved.
Results

Figure 10 shows the Love wave dispersion curves for the seven regions. The solid line in
each frame represents the isotropic results and the two dashed lines show the fast dispersion (above
the solid line) and the slow dispersion (below the solid line). The anisotropic velocities are as much

as 10% above or below the isotropic values.
Resolution and error estimates

When anisotropy is considered, the number of parameters is three times the number in the
isotropic case. In this case the FPE and F-test both say that only one eigenvalue should be retained

(Figure 11). The results shown in Figure 10 are those when all eigenvalues are retained
Tomography

In this report we shall only present partial results of what is being done in using the same

dataset for tomographic studies. Figures 12 and 13 show images of Rayleigh and Love group




velocities at 50 seconds. One of the most prominent features seen in these images is the Tibetan
plateau in western China. The rapid increase of group velocity east of Tibet is consistent with the
high gravity gradient there, indicating is rapid change in crustal thickness iz that region. The results

will be presented in paper under preparation (Wu and Levshin, 1992, in p-eparation).

Discussion and Conclusion

Surface regionalization and tomography remain to be a powerful ethod in areas where a
sparse, but high quality, network exists. Regionalization allows us to obtair dispersions for different

tectonic areas while tomographic study provides direct images of the mair. velocity provinces.
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Figure 4. Love dispersion curves of the seventeen regions shown in Fig. 1.
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RAYLEIGH WAVE GROUP VELOCITY, T=50 SEC

Figure 12. Tomography results for Rayleigh wave group velocity at 50 sec period.
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ANALYSIS OF REGIONAL BODYWAVE PHASES
FROM EARTHQUAKES IN EASTERN ASIA

Jeffrey S, Barker
State University of New York, Binghamton

OBJECTIVE:

The purpose of this study is to improve our understanding of the crustal waveguide phases,
P, and L,, by modeling regional waveformsin eastern Asia. Burdick etal. (1989) have demonstrated
that deterministic modeling of high-frequency P, and P, from NTS explosions can fit waveforms
recorded on a regional network and provide valuable information on regional wave propagation
characteristics. We wish to apply this sort of approach to regional waveforms from earthquakes
and explosions in eastern Asia, making use of the recent high-quality, broad-band data recorded on
the Chinese Digital Seismic Network (CDSN). Unfortunately the station spacing is quite sparse,
so that for a given event, little correlation between stations may be made. Without independent
information on crustal structure, there will remain a certain level of ambiguity in the identification

of the arrivals that interfere to generate the P,-P, waveform.

In order to minimize this ambiguity, we begin by modeling broad-band P, and P, waveforms
from profiles of earthquakes recorded at the CDSN station WMQ. This is not really the reciprocal
experiment since the earthquakes have different depths, magnitudes and mechanisms. However,
Wu (1990) showed that the P waveforms from these earthquakes have many similarities, and we
may interpret these in terms of the moveout of specific crustal phases. By simultaneously modeling
the waveforms from each of these earthquakes, we gain an understanding not only of regional
P-wave propagation near WMQ, but also of the kinds of variations observed in the waveforms for
different source depths and mechanisms. By modeling profiles along different azimuths or recorded

at different stations, we may investigate the effect of different crustal structures, or the effect of
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lateral variations in structure. Finally, we may use this understanding to model high-frequency
P,-P, waveforms from Kazakh explosions, or individual sources from other locations in eastern

Asia.

RESEARCH ACCOMPLISHED:

As a first profile, we consider earthquakes along a line SW of WMQ (Figure 1 and Table 1),
from the Tarim Basin and the Tienshan regions of western China. In a surface wave regionalization
study (Wu and Jones, "Surface wave regionalization and tomography in China and its vicinity",
this report), these are considered to be within the same structural region, so lateral variations in
crustal structure should be minimal. With one exception, these are shallow crustal earthquakes
(depths 8-33 km) with thrust mechanisms. The exception is an event in the Pamir valley (87276)
which occurred at a depth of 80 km. Since it is also our most distant event from WMQ, we will
not consider it in the initial modeling, but only later to test the modeling at greater ranges and source
depths. Broad-band seismograms from the other events have been processed to facilitate comparison
with synthetic seismograms. This processing includes time integration (to ground displacement)
and a high-pass Butterworth filter (frequency 0.08 Hz) to reduce low-frequency drift in the syn-
thetics. In this study we are concentrating on the P,-P; wavetrain, so only the vertical component
is modeled.

A profile of the vertical-component waveforms is shown on the left side of Figure 2.
Superimposed on the waveforms are travel-time curves appropriate or various P and S phases for
a source at 30 km depth in a layered velocity structure model (discussed below). To facilitate
comparison between events, the waveforms in the figure have been band-pass filtered from 0.5 -
2.0 Hz, and time shifts have been applied to three of the records. For events 87005 (560 km) and
87159 (1175 km), a time lead of 2 sec is used, while for event 87351 (422 km) a lag of 3 sec is
used. These may reflect errors in the assumed origin time of these events, or simply variations due

to source depth. The first 40-50 sec of these waveforms are shown on the left side of Figure 3,
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along with travel-time curved for selected phases. A number of features in the observed waveforms
correlate with some of these predicted arrivals. In particular, for the closest event, P, pP and S may
be identified. Beyond 400 km, P, and P may be identified, but PP is not a substantial arrival. In
fact, for these mechanisms, sP, and sP,P may be seen as an elongated series of arrivals at 400-600
km and as distinct phases at 1175 km. Many other arrivals are present in the observed waveforms;

the travel-time curves show only selected arrivals for a single source depth.

Other features are better modeled by computing synthetic seismograms for the appropriate
range, depth and mechanism and compzring this with the observed waveform. The velocity structure
model assumed (Table 3, Figure 4) is based on the surface wave results of Feng and Teng (1983),
modified so that the travel-time curves provide reasonable agreement to observed arrival times (as
in Figure 3). The Moho is at a depth of 56 km, while a mid-crustal discontinuity is located at 41
km depth. In the figures to follow, ref.ections from the Moho are denoted PP, while those from
the mid-crustal disctoninuity are denotzd PcP. A velocity gradient is included in the mantle so that
P, is modeled as a turning ray rather than as a head wave. The initial synthetics were computed
using generalized ray theory (Helmberg:r and Harkrider, 1978) in order to identify important phases
in the high-frequency P,-P, waveform. In all, 75 rays arriving as P waves were allowed, including
up to three reverberations in the crust ard mode conversions at the free surface and the Moho. More
complete synthetics were computed using a frequency-wavenumber (F-K) integration technique
(Barker, 1984). This method uses the compound matrix modification of the Haskell layer matrix
method with Filon quadrature over wzvenumber. Anelastic attenuation is included to move the
poles off of the real-k axis. No wavenumber filtering is imposed, so the synthetics include S waves
and surface waves in addition to the P wavetrain. These are computation-intehsivc synthetics, so
we must limit the frequency band and time duration (up to 4 Hz, 512 sec duration). The source
parameters used in generating the synthetics are listed in Table 2. These include Harvard CMT
mechanisms (published in the PDE) wken available; otherwise an average mechanism is assumed.

Source corner frequencies and Butterworth filter parameters are chosen to give the best agreement
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between data and synthetics. Source depths (again from the PDE) are sometimes questionable, so
the synthetics are computed at 10, 20 and 30 km depths, and the depth closest to that reported for

an event is used in the comparison.

Profiles of F-K synthetics for a source depth of 30 km are shown on the right sides of Figures
2and 3. Although some wrap-around is apparent at the beginning of the traces, P, and several later
arrivals may be easily identified. The synthetics are somewhat simpler than the observed waveforms
(compare the two sides of Figure 3), but many features are common. For example, at 400 km sP,
and sP,P interfere to generate an elongated wavetrain. Although the travel-time curves are not
shown, the second and third P-wave reverberations in the crust also arrive between 20-30 sec (re-
duced time) at this range. With increasing range, sP, becomes the dominant phase, interfering with
PP at 1200 km range. Higher-order crustal multiples (P,,PPyP, SyPPyP, etc.) do not appear to
play a dominant role in either the observed or synthetic waveforms for these earthquakes. Certainly
the strength of the upgoing S wave that reflects from the free surface is dependent on the radiation
pattern, and in this profile we are considering only earthquakes along a single azimuth and with
comparable mechanisms. For near-surface isotropic sources (explosions), we would expect crustal
multiples to dominate the waveform as Burdick et al. (1989) found for NTS. This is an example
of how radiation pattern can cause substantial difference in the generation of the high-frequency

P,-P, waveform, and may be exploited as a discriminant.

Since the P,-P, waveforms result from the interference of a number of phases which depart
the source either upward or downward, it is instructive to see how this interference varies with
changes in source depth. Shown in Figures 5 - 9 are observed vertical-component waveforms for
five of the events in the SW profile, along with F-K synthetics computed for 10, 20 and 30 km
source depths. With the exception of event 87279 (Figure 5), the traces have been aligned on the
P, wave (87279 is at pre-citical range, so is aligned on P). Upward departing phases (such as sP,)
move out in time with increasing source depth, while downward departing phases (such as PyP)

remain stationary or move in. The arrival times of important phases, determined from generalized
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ray synthetics, are indicated on the figures. At different ranges, different phases interfere to form
the arrivals observed on the vertical-component seismogram. For example, for event 87279 (82
km, Figure 5), PP is a relatively minor phase, but pP,P and (P:cP), (a double reverberation in the
upper crust) interfere at 30 km depth to produce a single large-amplitude arrival, which corresponds
to the largest arrival in the observed seismogram. The published depth for this event is 32 km,

which is consistent with the depth inferred from the synthetics (denoted by the arrow in Figure 5).

For event 87351 (422 km, Figure 6), crustal phases are well separated, resulting in the
clongated series of arrivals observed for this event. If the depth is somewhat greater than 30 km
(as indicated), arrivals observed at about 18 sec and 33 sec may be interpreted as sP, and s(PyP),,
respectively. The large-amplitude, late arrival in the synthetics is Sn which, as usual, is substantially
larger in the synthetics than in the observed waveform. At 560 km (event 87005, Figure 7), none
of the computed synthetics matches the arrival times of all of the observed phases, but from the
relative moveout of P,, P and sP,, we can see that a source depth of 14-15 km would produce an
excellent fit. The published depth for this event is 17 km. On the other hand, for event 98024a
(731 km, Figure 8), a source depth of about 16 km would provide a better fit (particularly for sP.P
and s(PyP),) than the published depth of 30 km. Finally, for event 87159 (1175 km, Figure 9), the
published mechanism is clearly inconsistent with the observed P-wave polarities at WMQ. How-
ever, since the crustal phases are well separated in time at this range, we interpret that the source
must have been shallower than the published depth of 10 km.

CONCLUSIONS AND RECOMMENDATIONS:

For the earthquake profile SW of WMQ, broad-band P,-P, waveforms can be well modeled,
and appear to be dominated by S waves that depart the source upward, then reflect and convert to
P waves at the free surface (e.g. sP,). Since this conclusion is radiation-pattem dependent, we would
expect other phases to dominate for other mechanisms or other azimuths. Nevertheless, once phases

are identified through synthetic modeling, depth-dependent variations in waveforms due to the
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interference of these phases can contribute toward discrimination. With an improved understanding
of the phases that interfere to generate the crustal waveguide phases, if becomes increasingly possible
to model with confidence the P,-P, wavetrains observed at sparsely distributed stations. What we
learn about wave propagation in western China is applicable to regional discrimination in any part

of the world.
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Table 1 - Earthquakes along the SW Profile from WMQ

Date Time Lat. Lon R Az Depth m,
(GMT) CN) CE) (km) ® (km)
10/6/87 (87279) 1306:20.3 43.4 88.55 820 302 32 48
12/17/87 (87351) 1217:25.0 4194 83.20 4219 59 33 5.1
8/5/87 (87217) 1024:21.0 41.36 82.11 534.1 57 33 48
1/5/87 (87005) 2252:46.5 41.96 81.32 559.6 66 17 5.9
1/24/87 (87024a) 0809:21.0 41.53 79.32 731.2 67 29 59
1/24/87 (87024b) 1340:40.0 41.4 79.25 740.5 66 33 5.2
6/8/87 (87159) 1330:36.0 39.79 7469 11750 63 10 5.1
4/30/87 (87120) 0517:37.0 39.76 7457 11783 63 8 5.7
10/3/87 (87276) 1100:03.3 36.45 7144 16043 54 80 6.0
Compiled from PDE, Wu (1990), and Bennett et al. (1990).
Table 2 - Parameters Used in Generating the Synthetics
Mechanism and Comer Frequency Highpass® Lowpass*

Date Strike* Dip* Rake® fc poles f poles f

¢ ) 9] (Hz) (Hz) (Hz)
87279 220° 40° 65 >4 3 0.2
87351 2200 40 65 0.5 3 0.3 1 1.5
87005 226 21 47 0.8 3 0.05
87024a 268 45 107 0.8 3 0.03 3 1.0
87159 298 27 91 03 1 0.08 3 20

Mechanisms are Harvard CMT solutions published in the PDE.

b

[
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No mechanism published. These vales are assumed.
Butterworth one-pass (causal) filters.




Table 3 - Structure Model for SW Profile Synthetics

Vp Vs Density  Thickness Q> Qs
(km/s) (km/s) (g/cm’) (km)

4.80 2.7 2.58 9.0 300 150
6.25 3.61 2.79 320 800 400
7.25 418 3.00 15.0 1000 500
8.00 4.62 3.33 200 1200 600
8.10 4.68 3.36 200 1200 600
8.20 473 3.40 40.0 1200 600
8.30 4.79 345 - 1200 600




Earthquake Profile SW of WMQ

90"

~
21

k87279

(87005 -

Fig.1  Map of northwestern China showing the locations of earthquakes located along a profile
SW of CDSN station WMQ. Also shown are the locations of the Kazakh test site and the
Lop Nor test site. \
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Fig.4  The velocity and density structure model assumed in computing travel-time curves and
synthetic seismograms. The model is derived from the surface-wave results of Feng and
Teng (1983), modified so that travel-time curves provide reasonable agreement with
observed arrival times. 18
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